Wear

  1. Publication date: 15 August 2019

    Source: Wear, Volumes 432–433

    Author(s): J. Pulsford, F. Venturi, Z. Pala, S. Kamnis, T. Hussain

    Abstract

    Due to the restrictions and mediocre performance of current methods of coating complex shaped parts in which line of sight processes currently struggle, the development of new coating methods is essential, with High Velocity Oxy-Fuel (HVOF) thermal spray coatings being a good candidate. In this study, a new compact High Velocity Oxy-Air Fuel (HVOAF) thermal spray torch designed to coat internal surfaces was traversed within cylindrical pipes of internal diameters (IDs) of 70 mm, 90 mm and 110 mm and a WC-10Co-4Cr coating was applied with a commercially available powder feedstock. Powder and coating microstructures were analysed using SEM/EDX and XRD. Fracture toughness and microhardness of the coatings were measured, and dry sliding wear performance was investigated at two loads: 96 and 240 N. It was found that the coating sprayed at 90 mm (medium ID) had a lower specific wear rates at both test loads due to the highest fracture toughness and microhardness; whereas, the coating sprayed at 110 mm (high ID) showed the highest specific wear rates at both low and high conditions due to poor fracture toughness.